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A B S T R A C T   

The use of RGB cameras or multispectral imaging systems can provide a wide range of applications for crop 
monitoring, plant phenotyping and disease detection. Although several approaches have been proposed, they 
increasingly use convolutional neural network-based architectures, which have, however, become increasingly 
cumbersome for improving classification results and difficult to train with few labeled data. Other increasingly 
popular approaches consist of using an ensemble of convolutional neural networks, in which each model solves a 
different problem. Since the inference is time- and resource-consuming due to the execution of multiple models, 
recent works have focused on transferring knowledge from an ensemble of models to a compact model to obtain 
better performance. In this paper, we propose an original approach that improves both accuracy and speed by 
reusing feature maps extracted by heterogeneous models from different data. Linked to each model, a trans-
formation block allows keeping the correct number of feature maps and changing their dimension if necessary. 
To generate the feature maps, we only need the first layers of the ensemble models, thus taking advantage of 
ensemble learning methods, while adding only a few layers of a second model dedicated to aggregation of 
features. This approach allows an ensemble of models to be combined with different architectures that can 
process different data, such as several representations of the same input image or multispectral images, while 
being fast enough at the inference stage. This approach is adapted to hierarchical classification tasks by re- 
exploiting the same feature maps with different transformation blocks, offering accuracy gains in tasks not 
handled by the ensemble model. The results are provided for the PlantVillage dataset, with RGB images con-
verted to three different color spaces, and for a custom Grapevine Yellow dataset, with multispectral images 
acquired with two different multispectral cameras.   

1. Introduction 

Agriculture is increasingly affected by global climate change. Among 
the effects observed in recent years in France and worldwide, new plant 
diseases are quickly developing and spreading, such as yellow beet virus, 
yellow rust, brown rust, Bois Noir, and Flavescence Dorée. Numerous 
studies have investigated the potential use of RGB imaging systems for 
plant disease diagnosis using deep learning techniques (Ahmad et al., 
2023). The most common deep learning models are convolutional 
neural networks (CNNs) since they have achieved increasingly impres-
sive scores, especially in classification tasks, in several real-world ap-
plications (Li et al., 2022; Zhang et al., 2023). These models have been 

suggested in various applications linked to precision agriculture (Cou-
libaly et al., 2022), including disease diagnosis and crop classification, 
as well as disease severity prediction and crop loss estimation (Kundu 
et al., 2022). 

An increasing number of studies focus on the detection of plant 
disease using multispectral imaging, especially Flavescence Dorée, one 
of the two main Grapevine yellow diseases, has no cure and has rapidly 
spread over the years (Albetis de la Cruz, 2018; Al-Saddik et al., 2017). 
Although multispectral imaging generally allows improvement in the 
disease detection accuracy, there is another interest in its use. Multi-
spectral imaging is important for the detection of Flavescence Dorée 
disease since we consider the disease on white grape varieties for which 
the symptoms are less visible than on red grape varieties. Moreover, the 
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first symptoms of this disease are not easily observable since they do not 
occur in the visible range. It may take several days between the first sign 
of stress that the plant undergoes and the manifestation of the disease on 
the leaves. Multispectral imaging can therefore be useful for early dis-
ease detection and to simplify their processing, and vegetation indices 
have been proposed as biophysical indicators (Albetis de la Cruz, 2018). 
However, to construct vegetation indices, multispectral images need to 
be realigned, as multispectral cameras are built as a matrix of sensors, 
each acquiring an image in a specific spectral band. Multispectral images 
must therefore be utilized as such (Al-Saddik et al., 2017), and to avoid 
aligning them, it will be interesting to move toward the fusion of fea-
tures extracted by several CNN models, each dedicated to a specific 
band. 

Despite multiple advantages of CNN models and recommendations 
provided for farmers and researchers to help develop appropriate tools 
for plant disease management (Ahmad et al., 2023), these architectures 
have become increasingly cumbersome to improve classification results, 
making their use impractical for applications requiring real-time pro-
cessing or calculations on onboard systems with limited capacities. In 
addition, combining multiple CNNs will weigh down the architecture of 
the global model. Such cumbersome architectures can be hard to train 
with few labeled data and can be affected by the vanishing gradient 
problem. For example, a cumbersome ResNet architecture was 
employed and achieved promising results on RGB images (Boulent et al., 
2020); however, the dataset was too small to conclude the robustness of 
this model. Such a model only represents a part of the global model that 
will have to work with multispectral images. This is another major 
challenge that needs to be addressed, as there is generally no large, 
annotated dataset for real applications, especially considering climate 
changes that impact symptom expression, as in the case of Flavescence 
Dorée. 

To overcome this last problem, ensemble learning methods have 
been proposed by training reasonably sized models and using all their 
predictions to improve the final result (Yang et al., 2023). These ap-
proaches are based on the variability of features extracted by each model 
from the same data under similar conditions. Depending on the initial 
weights, the data augmentation options or the order of the batches, two 
models sharing the same architecture may not learn in the same way 
because during the training phase, we randomly apply data augmenta-
tion options. Therefore, similar architectures will be trained on slightly 
different images, which will cause differences in their parameters and 
thus generate slightly different feature maps. The use of multiple models 
usually provides better generalization capacities; however, it is time- 
and resource-consuming to fully train multiple deep neural models. 
Beyond the difficulties during the training stage, such ensemble ap-
proaches are difficult to use in the inference stage in real-world appli-
cations due to expensive computation time. 

Unlike the research axis that consists of having increasingly precise 
and cumbersome models, other studies have focused on the design of 
models capable of operating in a short computing time while avoiding 
loss of accuracy. Among the existing models imagined for this purpose, 
networks belonging to the EfficientNet family (Tan & Le, 2020) are 
currently the most popular. By optimizing the depth, width and reso-
lution at each layer, such networks achieve an interesting balance be-
tween speed and accuracy on popular datasets such as Cifar-100 

(Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015). Other 
approaches, such as pruning, have focused on compressing 
high-performance cumbersome models to obtain a compact model with 
much fewer parameters (Blalock et al., 2020). 

Hoping to build accurate, lightweight, and fast operating models, 
other studies have sought to transfer “knowledge” from a complex 
model to a compact model. To optimize the performances of the compact 
model, the main idea is to train it to provide the same predictions as the 
robust model rather than directly training it without the model to 
imitate (Ba & Caruana, 2014; Urban et al., 2017). These studies are 
aimed at “mimicking the function learned by ensemble selection”, which 
is a previously introduced method (Caruana et al., 2004) for ensemble 
learning that was generalized in 2015 with the knowledge distillation 
(KD) approach. KD introduced a new way to transfer knowledge from an 
ensemble model to a compact model using soft labels (Hinton et al., 
2015). 

Our motivation is consistent with that of KD, one of the most wide-
spread concepts for knowledge transfer between models currently. We 
propose to use multiple models capable of processing heterogeneous 
data, such as several representations of the same image or multispectral 
images, to enhance precision while having a model capable of quick 
inference. Instead of proposing a new way of transmitting knowledge 
during the training phase, we reuse the features extracted by the 
different models as input to a compact model directly during the infer-
ence phase without adding too many calculations. The objective is to 
reduce the redundancy present in the first layers of classical CNNs by 
taking advantage of a combination of varied and complementary feature 
maps through a new feature aggregation method. The main contribu-
tions of this work are presented as follows:  

• We propose a feature aggregation method to exploit low-level 
knowledge acquired by an ensemble of models within a new 
compact model. The overall model performance is improved due to 
the use of a multitude of complementary heterogeneous features. The 
redundancy of features extracted by a single cumbersome model is 
replaced by the complementarity of heterogeneous features extrac-
ted by multiple models.  

• At the inference stage, we only exploit the first layers of each model 
from the ensemble to extract the feature maps, which saves time and 
resources. We then combine the feature maps via a transformation 
block and use them as input for a compact model to make the clas-
sification. The overall model is comparable to an ensemble model in 
terms of accuracy but much faster to be viable during the inference 
phase.  

• The proposed overall model is adapted to the use of high- 
dimensional data such as multispectral images. Each model from 
the ensemble focuses on the extraction of features from a specific 
band, whereas the compact model, which proceeds to the classifi-
cation, uses the best features extracted from each band. In addition, it 
is not necessary to process the input images, for instance, to realign 
them, which also saves time. The last two experiments show that we 
can disregard the parallax effect between different imaging sensors, 
which is particularly interesting for real-world applications.  

• We propose a transformation block specific to each model included 
in the ensemble, which allows the use of models with different ar-
chitectures, unlike classical KD methods based on feature maps. It is 
thus possible to select the best models of the ensemble without any 
constraint on the architecture. For instance, we can combine 
compact models for simple image processing, such as RGB images, 
and complex, heterogeneous models for harder images, such as 
multispectral images.  

• The proposed strategy can be applied to improve the accuracy on a 
subproblem of a main problem addressed by the ensemble models for 
a hierarchical classification task. For example, with the PlantVillage 
dataset, the main addressed problem could be the classification of 
different plants, whereas a subproblem could be the identification of 
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diseases for a specific plant. Our method allows us to be more effi-
cient on the subproblem due to an ensemble of models designed to 
address the main problem. Moreover, since the main problem is 
simpler, the training is faster, which is interesting because there will 
be no other training steps for the models from the ensemble. 

Subsequently, we will refer to the ensemble models that extract the 
feature maps as “level 1 models” and the compact model that receives 
these low-level feature maps and uses them for the inference as the 
“level 2 model”. Our proposed global model is formed from these two- 
level models and the respective transformation blocks. 

2. Related work 

Among workable solutions, knowledge transfer is a relevant 
approach. One of the first studies carried out to efficiently transfer 
knowledge from an ensemble of models into a compact model is (Bucila 
et al., 2006). The authors, rather than directly training their compact, 
student model on a small training dataset, use an ensemble of models to 
annotate a large unlabeled dataset and then train a student model on 
that dataset. As the ensemble model labels the data, the student model 
will seek to produce similar predictions, thus achieving better perfor-
mance than with direct training on the initial annotated dataset. 

The popular KD approach was introduced in Hinton et al. (2015) to 
take advantage of the performance of ensemble models. The authors use 
the input of a softmax layer as soft labels instead of using hard labels. 
Thus, they can exploit additional information, assuming that the mem-
bership probabilities to the other classes granted by the teacher model is 
relevant information for understanding and mimicking the model’s 
reasoning. 

Further research has focused on the use of complementary labels to 
facilitate the transfer of knowledge. In Romero et al. (2015), the authors 
proposed using what they refer to as “hints”, which correspond to the 
output of a hidden layer, to force the model to generate similar feature 
maps. This solution is designed to transfer knowledge from a shallow 
and wide model to a thin and deep model. The authors also show that it 
is more relevant to use inner layers as hints rather than classification 
targets. 

In Furlanello et al. (2018), the authors iteratively retrained the same 
model by reusing previously generated features and obtained a gain in 
accuracy compared to the initial model. 

More recently, a compact model composed of multiple branches as 
student models was proposed (Asif et al., 2020). The number of branches 
of the CompNet is equal to the number of models in the Teacher 
Ensemble Network. KD-loss based on Kullback‒Leibler divergence and 
mean-squared error is utilized between each branch and the corre-
sponding model in the teacher ensemble to guide the training. This loss 
is also applied one last time after all the features are grouped in both 
models. 

Another research axis for transfer knowledge attempts to work at the 
feature-map level instead of the label level to transfer information that is 
more specific. The recent work in Heo et al. (2019), is aimed at distilling 
the knowledge within the activation boundaries, i.e., the hyperplanes 
that allow the separation among the classes. The authors propose a so-
lution to transfer between spaces of different dimensions due to a 
connector function that typically consists of a fully connected layer or a 
1 × 1 convolutional layer, possibly associated with a batch normaliza-
tion layer. Introduced in Romero et al. (2015), the connector function 
transforms the response of a student layer into a vector of the same size 
as a teacher response vector. Due to this transformation, the authors can 
use an alternative loss and therefore transfer knowledge between 
different models. The authors achieve better results than with the 
initialization with ImageNet weights, which is a guarantee of quality in 
the transfer knowledge problem. This approach, however, is designed to 
transfer knowledge from a single teacher model. 

In Zagoruyko and Komodakis (2017), the authors use an attention 

mechanism to transfer knowledge at different points of a teacher model 
as the information varies depending on the position. This solution, 
however, requires similar architectures so that the student model can 
use the information. 

In Park and Kwak (2019), the authors propose transferring knowl-
edge from an ensemble of similar models to another model with the 
same architecture. They use a nonlinear transformation layer and an 
autoencoder reconstruction loss between the feature maps of teacher 
and student models. An alternative method is also proposed with an 
iterative transfer instead of a parallel train from a set of models. In this 
sequential strategy, the former student model becomes the teacher for 
the next model. However, this solution also requires the same archi-
tecture for each model. 

In Ji et al. (2021), automatic attention-based feature matching is 
proposed. The key idea is to force the features extracted by the student 
model to match those extracted by the teacher model with whom they 
share the greatest similarity. Rather than using predefined links, the 
authors propose to automatically determine the best matches according 
to a query-key concept previously introduced in Xu et al. (2016). 
Different experiments are run, notably for networks with different ar-
chitectures. This concept is, however, suitable for knowledge transfer 
from a single model. 

In recent years, feature aggregation methods have improved model 
performances for computer vision tasks. The most common example is 
probably the use of multiscale features, introduced in Lazebnik et al. 
(2006). Multiscale features are primarily obtained by using multiscale 
image inputs and extracting multiple features as discussed in Gong et al. 
(2014). There are other fusion strategies, such as multimodal informa-
tion (with data of different types), multifocus fusion (the same data with 
different focal lengths), multitemporal fusion or multiview fusion, as 
presented in (Zhang et al., 2020) for neuroimaging. Fusion strategies are 
widespread in the processing of medical images, as they are subject to 
similar difficulties in smart agriculture applications, given the reduced 
training datasets or visually close classes (Wang et al., 2021). 

Recent state-of-the-art concepts have also been applied to feature 
aggregation methods. The authors of ( Li et al., 2021), for example, 
benefit from the attention mechanism to better proceed with the ag-
gregation of features extracted by different layers. 

Extending these methods to an ensemble of heterogeneous models 
would be relevant to exploit varied data, such as different representa-
tions of the same image or multispectral images. However, a strategy 
must be applied to properly combine features despite the differences in 
size and number of maps. In (Heller et al., 2022), we proposed a solution 
to reuse feature maps among heterogeneous architectures for a hierar-
chical approach. A PCA transformation efficiently addresses differences 
between the number of extracted maps and the number of maps ex-
pected by a specialized model, while a bilinear interpolation allows 
adjusting size differences. However, this solution was only proposed for 
a spanning tree architecture having a single feature extraction on which 
specialized models are grafted. Specialized models must process the 
same type of input data as the level 1 model, which contradicts our 
desire to exploit heterogeneous and complementary input data, such as 
multispectral images. 

Many works focus on transferring knowledge from large and deep 
models to smaller models to achieve similar performances in a reduced 
computing time. Based on the popular KD approach, many studies use 
complementary labels to guide the training of a compact model. Feature- 
map-based methods seem to be more relevant because they allow the 
transfer of specific information, whereas label-based methods transmit 
information that is more abstract. However, the latter have the advan-
tage of being able to use different architectures, whereas the former are 
often limited to similar or even identical networks. Some works have 
focused on knowledge transfer at the feature-map level among different 
architectures but are suitable for transfer from a single model. Feature 
aggregation methods are often applied on a single model or do not 
address heterogeneous data or architectures. It would therefore be 
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relevant to propose a multisource feature aggregation strategy that can 
work with an ensemble of models having heterogeneous architectures, 
either on different representations of the same image or on heteroge-
neous data such as multispectral images. 

Both label-based and feature-map-based methods are aimed at 
making a compact model able to mimic the reasoning of a larger model 
by transferring various information. Their main objective is to extract 
the same features from the input data in a shorter time. In this paper, we 
propose another solution to mimic this reasoning—to reuse the feature 
maps—since we already have the models able to extract this informa-
tion. Consistent with the work of (Heller et al., 2022), the overall model 
proposed here allows, however, to combine the feature maps extracted 
by different architectures to increase the performances. Compared to our 
previous work, several key changes have been made. First, instead of 
extracting the feature maps from a single model that processes the same 
type of input data, we extract them from multiple heterogeneous 
models, each one processing another type of data. Their fusion could, 
however, lead to accuracy inconsistency if we do not carefully consider 
the complementarity of the features. Second, and perhaps the most 
important, all the models in the proposed strategy do not process the 
same dataset of images. The literature shows us that multispectral im-
ages are relevant and that each spectral band or vegetation index is 
adapted for specific information. To best benefit from various informa-
tion, it was compulsory to extend the solution to models that address 
different image types. For this purpose, the use of an ensemble of models 
is relevant, even if it implies proposing a solution to further reduce the 
computation time. Unlike classical ensemble solutions, the level 1 
models do not need to be run in their entirety since we are only inter-
ested in the feature maps that they extract and not in their final output. 
We can thus benefit from various heterogeneous feature maps while 
running only a level 2 model in its entirety. Unlike existing approaches, 
we fuse features extracted with heterogeneous architectures exploiting 
different inputs. Table 1 summarizes the existing strategies, grouping 
them into main categories, with the main advantages and drawbacks 
compared to our proposed solution. 

Our work is therefore also consistent with feature fusion for multi-
spectral data. Substantial research has been performed on this subject. 
The main difficulty in such fusion is how to combine the information. 
The features utilized for the fusion can be extracted at different levels of 
a model; therefore, we can identify different types of fusion (Liu et al., 
2016). According to the literature, middle fusion, which means using 

features extracted by intermediate layers, outperforms the other types of 
fusion. Most of the work, however, merges features from RGB and 
multispectral images only. For instance, the authors in (Qingyun & 
Zhaokui, 2022) propose a cross-modality attentive feature fusion strat-
egy and infer attention maps from common and differential modalities. 
The features are, however, extracted by the same model from the 
different images. These solutions require images that are acquired under 
the same conditions and perfectly aligned. However, most of the time, 
there are shifts between two images, for example, due to the use of 
different cameras that are not in the same position. In these cases, image 
registration tasks are applied. For example, (Kerkech et al., 2020) 
applied such an approach for vine disease detection from UAV images by 
relying on key points obtained by the AKAZE algorithm (Alcantarilla 
et al., 2013). Identifying such key points is a complex and 
time-consuming task that can introduce artifacts, whereas our solution 
completely disregards this step. We can use images with parallax effects 
or recorded by sensors having different viewpoints, while most of the 
works use RGB and multispectral superposed images. Note that the 
proposed strategy can also handle different representations of the same 
image or any combination between RGB images and multispectral im-
ages. For this reason, the first application concerns the well-known 
PlantVillage dataset composed of RGB images, while the second appli-
cation addresses multispectral images acquired with one and two mul-
tispectral cameras. 

3. Proposed method 

In this paper, we propose to use an ensemble of level 1 models that 
could have heterogeneous architectures to extract feature maps that can 
be reinjected into a single compact level 2 model. During the inference 
stage, it is not practical to use an ensemble of models, even if the ac-
curacy is better than with a single model. We therefore propose to apply 
our solution at low-level layers and only need an ensemble of models up 
to the layer where we apply an aggregation step during the inference 
stage. 

The ensemble of models can also be utilized for hierarchical classi-
fication tasks at the first level of a hierarchy for the main problem, thus 
requiring the lightest architectures and shortest training times. The level 
2 model will be employed in this case for the subproblem of the hier-
archical classification task. We propose a solution that merges a hier-
archical approach and ensemble learning strategy while requiring a 
single inference. 

To be adapted to real-world applications, the level 2 model must be a 
compact architecture, possibly capable of running in real time and/or on 
an embedded system. As we will discuss in the application section, this 
model is not sensitive to the parallax effect that occurs with multisensor 
cameras and does not require a preprocessing step prior to the inference. 
The model can also process data from different sources, including those 
with different viewpoints. 

Our proposed strategy is composed of four steps. First, we train an 
ensemble of level 1 models, which may not have similar architectures. 
However, each model optimizes the same main problem using a 
different input, e.g., classification of different plants from the PlantVil-
lage dataset using a different color space of the same image. Our 
approach has significant flexibility since we can use various models and 
work with data from different sources. In this paper, we limit ourselves 
to images, but nothing prevents us from using data of different types (for 
instance, images and numerical data on weather conditions at the time 
of acquisition). 

Second, we simply extract the feature maps for each level 1 model 
and remove all the subsequent layers by fixing a layer that may be 
different for each level 1 model. While this approach may seem coun-
terintuitive, we do not need the subsequent layers or the final outputs 
from each level 1 model. This deletion saves important time at the 
inference stage as well as resources in the case of implementation on 
embedded systems. 

Table 1 
Advantages and drawbacks of the main strategies compared to our proposed 
solution.  

Solution Advantages Drawbacks 

Multispectral 
imaging 

Accuracy, first symptoms, 
Vegetation indices 

Rarely used in real-world 
applications, sensitive to 
environmental conditions and 
parallax effects 

Deep learning 
cumbersome 
models 

Accuracy, generalization 
abilities 

Needs large, labeled datasets 
for training 

Label-based KD Different architectures Abstract information 
Feature-maps- 

based KD 
Specific information Similar architectures or a 

single teacher 
Feature 

aggregation 
Different sources Homogeneous networks 

Classical grafting 
approaches 

Heterogeneous networks Single feature extraction, same 
type of data 

Multispectral 
data fusion 

Different sources Same model, perfectly aligned 
images, image registration 

Proposed solution Accuracy, generalization 
abilities, different sources, 
heterogeneous networks, 
specific information, 
insensitive to parallax 
effects 

Position of GN and 
complementarity between 
features empirically evaluated  
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Third, we choose a level 2 model that will be fed by a subset of the 
extracted feature maps. Since we have to respect the specific format of 
feature maps for this level 2 model, we will not use a classical archi-
tecture but a “cut_model” introduced by Heller et al. (2022), i.e., an 
architecture where the first layer applied is not a classical input layer but 
rather an intermediate layer. We usually build the cut_model based on a 
classical existing CNN architecture by removing its n first layers. This 
parameter n is, however, difficult to determine and is empirically 
selected here. 

Last, once we know the expected input format of the cut_model, we 
apply a transformation block to each level 1 model to transform the 
selected feature maps to make them usable by the cut_model. The 
transformation block reduces the number of feature maps and changes 
their size. We propose in Section 3.4 two different transformation blocks 
to better control the complementarity of feature maps according to the 
outputs of the first step and the performances of each level 1 model. 

Fig. 1 illustrates the global methodology on voluntarily generic data 
since the flexibility of the strategy makes it applicable to a very wide 
range of applications. 

We can use different level 1 networks with different architectures to 
extract heterogeneous low-level feature maps. Thus, the variability of 
the features is twofold: due to the various models and due to the 
different data sources. In the latter case, we can use different repre-
sentations in different color spaces of the same input RGB image, since 
the authors of (Gowda & Yuan, 2019) noted that it is relevant to use an 
ensemble of models on different representations of the same image. For 
instance, a first representation could be obtained by using the identity 
function, a second representation could be a conversion to the Lab color 
space, and a third representation could be a conversion to the HSV color 
space. Thus, even if we only have a single data source, the proposed 
solution is still relevant. The concept can be applied to any data, 
including different image sources, as we observe in the last two appli-
cations where multispectral images are utilized. 

3.1. Ensemble model 

The first step of our strategy is relatively simple and is presented in 
Fig. 2. 

The objective here is to feed each model in the ensemble with a 
different input (a different version of the same input or a different image 
acquired by a different sensor) so that they can extract different features. 
This task is obviously not optimized if the different images are generated 
from the same base image since the inputs are still highly correlated. 
However, even those small changes may be enough to improve the 
complementarity of the features and move closer to the reasoning of an 

ensemble model. Naturally, the use of independent inputs gives better 
results, as we observe in the last two applications using multispectral 
images. 

3.2. Level 1 models: feature extraction 

In the second step, we fix the layer of each level 1 model from which 
we will extract feature maps, each one being composed of Ni maps of size 
Li*li, while respecting certain constraints. We want each selected layer 
to output enough feature maps so that we can exploit an important 
amount of information from each level 1 model within the level 2 model. 
For these reasons, we always work with the output of convolutional 
layers. 

Another point to consider is the individual performance of each 
model. Since we address different models, it is unlikely that all models 
will have the same performance. It can then be relevant to keep more 
features from the best models. This point will be further discussed in 
Section 3.4. This approach offers important flexibility since we can, in 
addition to fusing information extracted by different networks and on 
different data, perform multiscale fusion. This capability can be espe-
cially suitable if the different input data have multiple input sources, i.e., 
if they have been acquired with different sensors, for example. The se-
lection of this layer is similar to that for the Grafting Node in (Heller 
et al., 2022) since we use the same type of level 2 model, but with a key 
difference. Here, the only role of the level 1 models is to extract features, 
whereas they also served as classifiers in (Heller et al., 2022). Thus, we 
will not need the layers located after the feature extraction point. Hence, 
it is relevant to place this point early in each of the models from the 
ensemble to delete an important number of layers, whereas it was 
relevant to place it deeper in the network in the initial grafting solution. 
Typically, the extracted feature maps that are combined represent the 
output of one of the first five convolutional layers of the various net-
works. One of the limitations of our approach is that the selection is 
empirical. It would be relevant to rely on more theoretical concepts to 
more robustly identify positions. 

Once we have selected the position of each layer, we remove all the 
subsequent layers of each level 1 model since they will no longer be 
useful. Note that even if we keep only a few layers for each level 1 model, 
we still train them in a classical way to ensure the best possible features 
for the task at hand. Even if they are utilized only as feature extractors at 
the inference stage, the models from the ensemble are trained as 
classifiers. 

Fig. 1. Global methodology with an ensemble of N models applicable to any type of data. Each model from 1 to N is trained to classify between superclasses C1 to Cn. 
The selected feature maps from each model are transformed and fused by the transformation block. The cut_model can be trained to classify between superclasses C1 
to Cn but also between classes Ci1 to Cin of one superclass Ci. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article) 
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3.3. Level 2 model: feature fusion 

Now that we have the ensemble of models, each one having few 
layers, we need to select a level 2 model that will receive the feature 
maps from all the level 1 models. 

Let us assume that the level 2 model is trained on a subproblem, e.g., 
classification of diseases for one specific plant, and that a specific model 

achieves interesting results for this task. We decide to use this model as 
the level 2 model in our process. Since we already have a consequent 
number of feature maps, we will not use them as classical input data for 
the level 2 model but rather reinject them further in the model in a layer 
expecting N feature maps of size L*l. All the previous layers of this model 
are removed, defining what we refer to as a “cut_model”, which saves 
additional time. To facilitate the next step, we prefer to start the level 2 

Fig. 2. Overview of the architecture of the ensemble model. Each model uses a different input and extracts low-level feature maps. The different feature maps are 
heterogeneous and can vary in size and number depending on the respective input. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article) 

Fig. 3. The extracted low-level feature maps are resized and merged by a transformation block, resulting in a new set of feature maps that can feed the Cut_model. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article) 
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model from a layer whose depth is quite similar to the layers of level 1 
models in which we extract the features. For instance, in the case in 
which we use the same architectures for all the models and extract the 
features at layer N of the level 1 models, it would be relevant to start the 
cut_model directly at layer N + 1. 

Fig. 3 illustrates a situation in which the cut_model expects an input 
dimension of N*L*l, and we extract Ni feature maps of size Li*li from 
each level 1 network, with ΣNi>N. To obtain the expected number and 
format of feature maps, we use one or several transformation block(s) 
that will be responsible for extracting the correct number of maps and 
resizing them to the expected size, from Li*li to L*l, so we can concat-
enate them to be able to run the cut_model. Two different transformation 
blocks, “Global block” and “Independent block”, are presented in Sec-
tion 3.4. Unlike (Heller et al., 2022), where the proposed solution cor-
responds to a tree spanning hierarchy, the proposed method here 
represents a converging architecture in which all branches lead to the 
same compact model, the cut_model. 

The cut_model is trained in a classical, supervised way for the 
problem it addresses, but with the output of the concatenation of the 
feature maps generated by the level 1 models as input. Depending on the 
problem, we can modify the number of maps that we obtain from each 
level 1 model to optimize the performance of the cut_model. Thus, the 
solution is relatively flexible and can be adapted to different problems. 
When we do not have a priori knowledge about the best feature maps 
that are extracted from the level 1 models, or when we want to ensure 
that we exploit the maximum information from each level 1 model, we 
can use the same amount of feature maps from each model. Conversely, 
if some level 1 models are more relevant than others, for instance, if they 
reach a significantly better accuracy, we can select most of the features 
from these models. The feature maps generated by the other level 1 
models will therefore be utilized to make small adjustments and obtain 
small improvements. Even if they individually perform less well, the 
complementarity of the features generally leads to an improvement in 
the accuracy of the cut_model. It is, however, necessary not to have too 
many features from the same model. In this situation, the cut_model 
predictions will be very close to those of this individual model and will 
not benefit from the heterogeneity of data to perform more robust pre-
dictions. Worse, the other features can behave similar to noise, leading 
to accuracy inconsistency. 

The cut_model can perform the same task as the ensemble of the level 
1 models; for instance, all models are trained for a subproblem such as 
disease detection vs. normal plants. However, our concept can also be 
applied to hierarchical classification tasks. In this case, we can use the 
feature maps obtained for the main problem by training the level 1 
models on this task, e.g., classification between two different plants, and 
change the architecture of the cut_model for a subproblem, e.g., disease 
detection. Thus, the solution is not only useful for optimizing the per-
formance of the cut_model on a specific task for which the level 1 models 
are trained—plant classification in this example—but can also help in-
crease the performance on other tasks, which are still linked to the main 
problem, such as identification of the diseases. This scenario is consid-
ered in the application section. We also determine that our method is 
particularly effective in reducing not only the number of parameters 
when the same task is performed by level 1 and level 2 models but also 
the processing time when we want to address a subproblem. 

Due to the concatenation layer, we force the level 2 model to work 
with heterogeneous features and to move closer to the way an ensemble 
model would work at a faster speed. For the solution to be viable, an 
essential step is the transformation block. 

3.4. Transformation block: feature transformation 

Since one of our goals is to transfer knowledge between two archi-
tectures without needing to be similar, we must address three issues. 
First, we need to propose a solution to reduce the total number of feature 
maps without losing information. Second, we must be able to combine 

the feature maps despite their different dimensions (since we can use 
different architectures in the ensemble model). Last, it is compulsory to 
preserve the information from the different sources through the fusion 
process (since the data can derive from different sources). 

Since we are using an ensemble of models, we will generate an 
immense number of feature maps, easily greater than that expected as 
the input of the level 2 model. Principal component analysis (PCA) can 
address this problem since it preserves the main information while 
reducing the number of feature maps. Note that more advanced solu-
tions such as autoencoders might produce better results. 

PCA, despite its simplicity, leads to impressive results while being 
fast. The autoencoders, for their part, can achieve slightly better accu-
racy but are substantially slower. We have two main concerns: 
benefitting from the ensemble models to improve the classification task 
and optimizing the process to be fast enough for real-world applications, 
possibly embedded on low-capacity devices. To gain better accuracy 
than achieved by PCA, we must use large or deep autoencoders, which 
means sacrificing the processing speed. Hence, if the accuracy is satis-
factory using PCA, we use this dimension reduction method as a part of 
the transformation block. 

After successfully obtaining the expected number of maps, we still 
must change their dimension to match the format expected by the 
cut_model. Moreover, to gather all the feature maps in the concatena-
tion, they must have the same dimensions (only the number of maps can 
vary). The resizing of each map can be performed with bilinear in-
terpolations, making it possible to increase or reduce their dimension as 
needed. 

This transformation can also be achieved by using neural networks, 
possibly at the same time as the dimensional reduction. However, a 
simple bilinear interpolation is very fast to perform, and it seems 
disproportionate to use autoencoders to resize each feature map. 

We must preserve the maximum amount of information from each 
input. Two situations can arise:  

• The feature maps are compatible, which means that they have the 
same size, typically when we represent the same input image in 
different color spaces. In this case, first, we combine all the feature 
maps after the bilinear interpolation of each map and then run the 
PCA. Second, linear combinations are obtained with the features 
from each data and optimally executed. The feature maps from each 
model are resized, and the PCA will only be run once. This "global" 
transformation block is represented in Fig. 4. 

If data are derived from different sources (different sensors, different 
cameras, or data of different types), we cannot directly apply PCA 
without losing information. Indeed, even a small shift between the input 
images will generate blurred areas that will be hardly exploitable. 
Without any preprocessing, we will lose essential information. An 
alternative solution is to use “Independent” transformations and apply 
the PCA on each set of feature maps before resizing them, as represented 
in Fig. 5. Thus, the input of the cut_model consists of a set of feature 
maps that have been built from a single input. We therefore ensure that 
each input data point is correctly represented. This solution also works 
with sensors having different viewpoints. 

We apply the proposed method on the well-known PlantVillage 
dataset composed of RGB images and show that our approach is an 
innovative way to transfer knowledge. We then focus on multispectral 
images acquired with a DJI P4 Multispectral NIR (near-infrared) camera, 
with a small but regular parallax effect between the images acquired by 
the different sensors. Then, we add to these data other acquisitions from 
a multispectral SWIR (shortwave infrared) camera. This last application 
is more difficult since the parallax is not regular and the resolution of 
those images is also different due to the use of a different detector. 
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4. Experiments 

The objective of this section is to validate the performances of the 
proposed approach for classification tasks in realistic applications. We 
show that we always achieve a gain in accuracy compared to a classical 
model trained in a classical way. We compare the accuracy of our pro-
posed method shown in Fig. 2 with each “full” version, named “Model i”, 
i.e., the same architecture that was directly applied to the same input 
(image converted to the same color space or the respective spectral 
band). Compared to the diagram of Fig. 2, each “Model i” was trained on 
the respective input, and the accuracy was evaluated on the final output 
classes. 

The speed tests were performed on a Dell precision 3530 (Intel Xeon 
E-2176 M CPU @ 2.70 GHz and NVIDIA Quadro P600) using Python 
3.7.1, TensorFlow-GPU 1.14.0 and Keras 2.3.1. We ran each experiment 
five times and report the average results over these runs. Since the 
standard deviation was small and regular (± 0.1% in accuracy and F1 
score for each model), we only indicate the average results. 

The first two applications involve the PlantVillage dataset, which is a 

popular dataset of individual leaves of different plants infected with 
different diseases. For example, the dataset was used by Lee et al. (2020) 
to compare pretraining tasks on a global domain and specialized 
domain. The authors also suggested that it may be less relevant to train 
models in crop-disease terminology than to learn to distinguish the 
diseases independently of culture. We did not use the entire dataset but 
rather 6 different classes: four classes related to vine leaves (one healthy 
class and three different diseases) and two classes related to peach leaves 
(healthy and infected). The objective was to have classes containing 
symptoms (disease) that could be confusing on leaves with different 
shapes. Rather than adopting crop-disease terminology, we break down 
the classification task into two tasks: the main problem is to classify the 
crop, i.e., vine vs. peach leaves, and the subproblem is to classify the 
disease, i.e., healthy vs. each disease class. Thus, we aim to learn the 
discriminating symptoms of each disease and for each culture. We have a 
total of 6719 RGB images of size (256,256). To save time, each RGB 
image was employed as is and then converted to only two other color 
spaces: Lab and HSV. Each model was trained with the categorical 
cross-entropy loss and the Adam optimizer. The metric that we utilized 

Fig. 4. "Global" transformation block: PCA is applied only once, after the maps have been concatenated, to build a combination from different sources. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article) 

Fig. 5. "Independent" transformation block. PCA is applied to each set of feature maps to ensure that we retain information from each model. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article) 
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was the accuracy since the classes are relatively balanced. The initial 
learning rate was 1e-3 and gradually decreased to 1e-5. Different data 
augmentation options, such as rotations (from − 45 to 45◦), horizontal 
flip, zoom and translations, were randomly applied to the data. Gaussian 
noise and brightness variations were also applied with small 
probabilities. 

The last two applications concern a custom dataset composed of 5 
types of images, each acquired at a specific spectral band, as well as an 
RGB image recorded with a DJI P4 multispectral NIR camera. We thus 
have 6 representations of each leaf: blue (450 nm ± 16), green (560 nm 
± 16), red (650 nm ± 16), red edge (730 nm ± 10), NIR (840 nm ± 26) 
and RGB acquired with a classical sensor. The dataset is composed of 
2078 images per band. Each leaf represents one of 4 classes: healthy 
(624 images) and 3 different diseases, namely, Esca (155 images), 
Grapevine Yellow (775 images that have been identified after laboratory 
analysis by our Comité Champagne partner as Bois Noir, a disease that 
shares completely identical symptoms with Flavescence Dorée) and 
Grapevine leafroll-associated virus (524 images). These latter two clas-
ses shared many visual appearances, which makes classification diffi-
cult. It was interesting to use images of Bois Noir since the disease is 
much less epidemic than Flavescence Dorée but shares the same visual 
symptoms, which means that the model learns to identify the presence of 
one of these diseases within the Grapevine Yellow class, taking much 
less risk toward a vineyard. The application does not distinguish be-
tween Flavescence Dorée and Bois Noir, but the symptoms are so similar 
that it is not yet possible to distinguish them only by imaging techniques, 
and laboratory analyses are necessary. In this application, we are mainly 
interested in Grapevine yellow detection and thus consider the F1 score 
to evaluate our performances on the infected leaves at the first level and 
on the Grapevine Yellow class at the second level. We are mainly 
interested in the F1 score of the second level since we want to avoid 
false-negatives for the Grapevine Yellow class. However, the F1 score of 
the first level can also be relevant since it may indicate false negatives 
between instances of Grapevine yellow and healthy leaves that would 
occur during the initial classification. 

For the last application, a second multispectral camera was utilized 
to make acquisitions on another 8 spectral bands in the SWIR domain, 
ranging from 900 to 1700 nm. We used a C-RED 3 camera built for us by 
the manufacturer First Light Imaging. The camera was equipped with a 
multispectral system based on a filter wheel containing 8 narrowband 
filters (10 nm) that we have chosen between 970 nm and 1650 nm. 

Since we were particularly interested in the performances for the 
Grapevine Yellow class and classes are less balanced with more images 
for the healthy class, we applied the F1 score in addition to the accuracy. 

4.1. Results on the Plantvillage dataset: all models trained for the same 
main problem 

For our first experiment, we utilized EfficientNet-B0 as the archi-
tecture of the three level 1 models shown in Fig. 2 and selected another 
EfficientNet-B0 as the level 2 model to compose the cut_model shown in 
Fig. 3. These models can run in real time and achieve satisfying results 
on such classification tasks. We made this choice to better compare our 
approach but note that we could have used different architectures for 
each model. Here, the three models employed in the ensemble share the 
same architecture, with the variability in their representations due to 
changes in the input data (RGB, Lab, and HSV) and the random pa-
rameters applied during the training. We did not see any significant gain 
with models pretrained on ImageNet, so we preferred a random 
initialization to maximize the complementarity of features. 

We start by training each of the level 1 models in its color space on 
the main problem. As the boundaries to separate peach and vine leaves 
are easy to identify, the training stage was sufficiently fast. Interestingly, 
this is the only time that we will need to train the level 1 models, which 
is a known limitation for ensemble techniques. The accuracy, speed, and 
number of parameters for each “Model i” on the respective color spaces 

are shown in the first 3 lines of Table 2. 
For comparison purposes, we also considered more traditional ap-

proaches than our approach. The first approach, which we named 
“Fusion”, consists of separately inferring the classes with each network 
and then making a decision by using a majority vote approach. The 
second approach, which we named “Softmax”, consists of merging the 
last features extracted by the different level 1 models and then applying 
Softmax to perform a classification with these combined features. Note 
that both methods require that all three “Model i” models be integrally 
run. 

To apply our approach, we chose the same position for the layers of 
each level 1 model, where we extracted the feature maps and the asso-
ciated position to start our cut_model: layer 27 for the level 1 model and 
layer 28 for the cut_model. We made a second choice, i.e., layers 44 and 
45, to evaluate the influence of the choice of an advanced layer. The 
cut_model, which is also based on an EfficientNet B0 architecture, was 
trained with the combined feature maps extracted from the different 
level 1 models, thus considering information from different spaces, but 
on the same main problem (classify peach vs. vine leaves). The choice of 
these levels was arbitrary, in the first case (levels 27–28) to have un-
specialized features that can be quickly estimated and in the second case 
(levels 44–45) to have a more balanced overall architecture. 

We observe that although we do not reach the results of the Softmax 
configuration (accuracy of 99.88%), we are still better when our 
approach is applied at an earlier layer (accuracy of 99.81%) than any of 
the individual models (best accuracy of 99.63%). The application to an 
advanced layer (levels 44–45) performed worse, perhaps due to less 
complementary features. As explained in Section 3, we prefer the first 
five convolutional layers to have a good balance between the quality of 
the features and the computation time. This reference supports our 
intuition since if we take a layer that is too advanced, in addition to 
wasting time, we negatively impact accuracy. However, as in our solu-
tion, we only use multiple models with few layers, and the processing 
time remains small, unlike when we fuse the three complete models. 
Note that the number of parameters also remains low, which is impor-
tant in terms of the resources needed for implementation on embedded 
systems. Actually, we achieve an interesting balance since the accuracy 
of our approach is near the accuracy of the Softmax solution, which 
needs three complete models to run, is similar to a single model in terms 
of time and resources. From a speed point of view, our approach is 
slower than individual models but faster than ensemble strategies. Note 
that we can improve our processing time by using parallelization solu-
tions to extract the features with the different level 1 models and thus 
achieve a speed that is closer to that of a single model. Here, we present 
the results without any implementation of such a strategy. The gain in 
accuracy is quite limited here since the individual models are already 
efficient. However, we achieve a gain in accuracy by applying color 
space transformations to a single image. This finding is encouraging for 
the following step, when we use more complementary features on a 
more difficult task. 

Note that the results presented in Table 2 were obtained with the 
“independent” transformation block architecture, which means that we 
individually applied PCA on the feature maps from each model, as 
shown in Fig. 5, to preserve the data from each source. Once again, we 

Table 2 
Results obtained by using similar architectures (efficientnet-b0) for each level; 
models that were trained for the same task.  

Model Précision Speed (FPS) Parameters 

RGB 99.63% 52.79 4,052,126 
LAB 99.48% 52.79 4,052,126 
HSV 99.48% 52.79 4,052,126 
Ensemble 99.81% 17.55 12,156,378 
Softmax 99.88% 17.39 12,156,374 
Proposed solution (27–28) 99.81% 29.23 4,069,878 
Proposed solution (44–45) 99.48% 26.2 4,099,650  
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can reduce the processing time by applying parallelization solutions to 
the different transformation blocks. 

In the following step, we chose not to keep the same number of 
features for each model. Instead, we decided to keep a higher proportion 
of features for the RGB model (whose accuracy is 99.63% vs. 99.48% for 
the other models), i.e., α1 > α2 = α3. At this point, this decision had no 
impact on the accuracy, and we achieved the same results. It would be 
more relevant to do so for models with vastly different performances and 
distinctly superior models. 

We also performed an additional test to determine whether we can 
replace a prior choice of the feature maps (choice of values of αi) with a 
mechanism that will automatically choose the relevant combination of 
feature maps. We selected the global transformation block structure 
instead of the independent transformation block structure. First, we 
resize the individual maps so that they have the expected size. Second, 
we put the maps in the concatenation layer, obtaining an immense 
number of maps with the expected dimensions. We then converted each 
of them to a vector and applied a single PCA. This second possibility 
requires more computation resources than that proposed in Fig. 5 and is 
less suitable for parallelization solutions. It could, however, be adapted 
to cases where many level 1 models are employed. It, however, needs the 
data to be the same to avoid the blur phenomenon observed previously. 
The accuracy obtained in this case was 99.84%, the speed was 27.15 
FPS, and the number of parameters is the same as shown in Table 2. We 
were also able to achieve better results than in the traditional supervised 
training (individual models), achieving slightly better accuracy similar 
to a Softmax ensemble model, but this approach is less flexible and 
slightly slower. 

Although these results are interesting, all of the level 1 models share 
the same architecture. We therefore performed an additional test by 
replacing the RGB model with a MobileNet network and the HSV model 
with an EfficientNet B1 network, using one PCA per model ("Indepen-
dent" transformation block proposed in Fig. 5). This new combination 
achieves an average result of 99.84%, which is slightly better than the 
accuracy result of 99.81% previously obtained with the same trans-
formation block. This finding can be explained by a greater comple-
mentarity of features provided by the variety of architectures. 

4.2. Results on the PlantVillage dataset: models trained for different 
problems 

After having shown that our approach allows the use of comple-
mentary features to solve the main problem, i.e., classification between 
peach leaves and vine leaves, we then tested it within the framework of 
transferring information to solve a subproblem: classify diseases of vine 
leaves among themselves and diseases of peach leaves among them-
selves. We used the same configurations for the main problem, i.e., 
EfficientNet-B0 architecture for the three level 1 models but employed a 
cut_model based on the EfficientNet B3 architecture. This model is 
deeper since it is more difficult to distinguish two diseases on the same 
plant as two plants. The results of this second application are presented 
in Table 3. The “Best individual model” line corresponds to the perfor-
mances obtained with a classical supervised approach by retaining the 
model that gives the best result among all the models, each being fed by 
Input i. The “Single level 1 model” is utilized to compare our perfor-
mances with the particular case in which there is only one level 1 model 
fed by only one of the available inputs. This configuration is reminiscent 
of the grafting solution of (Heller et al., 2022). Indeed, if we do not 
consider the inference of the level 1 models, we consider the grafting 
solution as a particular case of our method, in which we only extract the 
features from a single model without searching for complementarity 
between two features. Here, we highlight our interest in using features 
from different sources rather than from just one source as cut_model 
inputs. 

Once again, we achieved better results than the best classically 
model trained, which highlights the interest of the solution even for 

hierarchical classification tasks (remember that the level 1 models were 
not retrained for this new problem but only for the classification of plant 
species). In this situation, the accuracy is not affected when the solution 
is applied to a more advanced layer. A possible explanation is that the 
level 2 network is good enough to “hide” potential loss. We compare our 
solution to the particular case in which the ensemble of level 1 models is 
composed of a single model. The results show that it is relevant to use 
multiple level 1 models since we obtain better accuracy. 

To be exhaustive in our tests, we carried out the same experiment by 
replacing the three level 1 models, which had the same architecture 
(EfficientNet-B0), with three different models (EfficientNet B0, B1 and 
B2). Since we wanted to emphasize our interest of using different ar-
chitectures, this time we only used RGB images as input instead of 
different color subspaces, i.e., each model was fed with the same RGB 
image. We still observed a gain in accuracy over traditional supervised 
learning, with an average accuracy of 99.48% for the vine leaves and an 
average accuracy of 99.52% for the peach leaves. The performance gain 
is less since we keep more feature redundancy, and the maps are all 
calculated from the same RGB image. 

We conducted two other experiments for the classification of vine 
leaves: increasing the number of level 1 models and adding a multiscale 
aspect to the solution by selecting very distant candidates for each level 
1 model (e.g., 5th, 20th and 40th convolutional layers). Adding other 
models designed to classify other color space images did not increase the 
accuracy. Worse, by adding one more model, the precision started to 
decrease, while the computing time increased. We might have intro-
duced too much redundancy. The multiscale approach gave similar re-
sults, from a slight decrease (approximately 0.2%) to equal precision. 
The results of the literature, however, lead us to believe that it is possible 
to improve performance using this approach, with a less arbitrary choice 
of candidates. 

Next, we apply our proposed method to our custom Grapevine Yel-
low dataset containing multispectral images. The following experiment 
shows that the solution is suitable for addressing multispectral data 
without any preprocessing, despite the parallax effect. Unlike the 
PlantVillage Dataset applications, we have data from different sources. 
Thus, we have less redundancy among the features, which should 
positively impact the accuracy. 

4.3. Grapevine yellow detection: fusion of multispectral feature maps 
from a single multispectral camera with multiple sensors 

We have already shown that our proposed strategy can benefit from 
the use of heterogeneous architectures applied to the same data, possibly 
represented in different ways. In this experiment, we show that even 
with the same base model, multispectral imaging can lead to an 
important gain in accuracy. For this reason, we chose a model identical 
to that utilized in the first experiment (Section 4.1), with the only 
exception being the inputs, which consisted of multispectral images 

Table 3 
Results obtained by using different architectures (EfficientNet-B0 and Effi-
cientNet B3) for each level; models that were trained for different tasks: main 
problem for the level 1 models and sub-problem for the level 2 model.   

Model Accuracy FPS 

Peach 
leaves 

Best individual model 99.26% 26.9 
Single level 1 model 99.38% 26.9 
Proposed solution (13–14) 99.75% 26.01 
Proposed solution (27–28) 99.75% 26.28 
Proposed solution (three different networks, 
RGB only) 

99.52% 25.6 

Vine leaves Best individual model 99.25% 26.9 
Single level 1 model 99.42% 26.9 
Proposed solution (13–14) 99.81% 26.01 
Proposed solution (27–28) 99.81% 26.28 
Proposed solution (three different networks, 
RGB only) 

99.48% 25.6  
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instead of different representations of the same RGB image. We there-
fore employed the same EfficientNetB0 architecture for each of the 5 
spectral bands as well as for the RGB image. The cut_model architecture 
is also based on the EfficientNet B0 architecture. Additionally, we 
considered the same layers, i.e., layer 27 for the level 1 model and layer 
28 for the cut_model. 

However, in contrast to the previous application, we cannot apply 
the global transformation block without observing blurred areas. To do 
this, it would have been necessary to preprocess the input images by 
realigning them. The shift between the different images acquired for the 
5 spectral bands is regular for the dataset that we acquired in the lab-
oratory since it corresponds to a parallax shift due to the position of the 
sensors of the DJI P4 multispectral, NIR camera and can therefore be 
corrected. However, it is much more complicated for in situ acquisitions 
since parameters such as the distance from the object and the acquisition 
angle must be considered. Fortunately, the independent transformation 
block structure proposed in Fig. 5 makes it possible to combine the 
feature maps even though the images are not perfectly aligned. Avoiding 
the preprocessing step is another way to save calculation time. 

We have addressed this classification task in two stages: first, we 
performed a binary classification between healthy leaves and contami-
nated leaves (3 different diseases). All models were trained on the main 
problem. The results are presented in Table 4. In this application, we are 
particularly interested in the detection of the Grapevine yellow, and 
above all, we want to avoid false negatives. It is therefore relevant to 
consider the F1-Score, including the healthy/infected status. As shown, 
the blue band carries less information than the other bands. Once again, 
we outperform the best individual models. Note that a bad model or bad 
input data can lead to accuracy loss, as shown with the fusion of 5 bands, 
which performs worse than the fusion of the 4 best bands. This loss is 
even more important when we consider the F1 score, which means that 
we perform worse on infected leaves because of less complementarity 
among the features. 

Our proposed model succeeded in achieving better results than the 
best individual models despite the shift among the feature maps, which 
confirms that we do not have to preprocess the images to correct 
alignment issues. Another interesting point is that even with a larger 
ensemble, the processing time remains correct since we do not add too 
much computation for each model. We observe a loss of 1 to 1.5 FPS 
each time we add a level 1 model. This loss is mainly attributed to the 
computation of the feature maps and will only be observed the first time 
we process an image (for the healthy-infected status here). If we reuse 
the same feature maps within another cut_model to identify other dis-
eases for the infected leaves, for instance, there is no significant differ-
ence, from a processing time point of view, among the configurations. 
We achieved an average gain of almost 0.5% compared to the RGB 
model, which is significant at these accuracy levels. This gain is slightly 
greater if we only consider the infected leaves, as highlighted by the F1 
score. As expected, multispectral imaging is relevant for this type of 
application. 

Second, once we classify the leaves, which was the main problem, we 

applied once again our solution, this time training the cut_model on a 
subproblem that classifies the diseases among them. As previously 
noted, we train each level 1 model on the respective images for the 
respective spectral band on the main problem to make a fair comparison, 
and our fusion solution is still based on the models that determine the 
health status. The difference stems from the level 2 model, which has the 
same architecture as previously noted (EfficientNet B0) but was trained 
with the feature maps extracted by the level 1 models as inputs instead 
of the initial input data. The results are presented in Table 5. 

The results are quite similar to those of the previous experiment: the 
blue band is considerably the less informative, and we achieved better 
results than all the individual models and the RGB model. Since the task 
is more difficult, the gain achieved by our solution is more significant, 
with an F1 score for the Grapevine Yellow class increased by 1% 
compared to the RGB model and by 0.4% compared to the Red Edge 
model, i.e., the best individual model. Fig. 6(c) gives an example of a 
vine leaf infected by Grapevine yellow that our solution correctly clas-
sifies but that is classified as Grapevine leafroll-associated virus by the 
best individual models. This example can be visually compared to true 
positive leaves for both classes (Figs. 6(a) and 6 (b)). 

This application confirms that we can optimize a subproblem of the 
task handled by the ensemble of networks. This finding is interesting 
since it means that even if we add new subclasses, for instance, we will 
not need to train once again the level 1 models but only a new cut_-
model. Although we did not focus on the training phase, this finding is 
still interesting, as it is a known limitation of methods based on multiple 
networks. The shift between the images implied by different positions of 
the sensors did not perturb our solution, and we successfully fuse feature 
maps from multispectral data. 

We conduct further analysis by adding other images acquired with 
another camera. Indeed, even if we faced a parallax effect, it was a 
regular phenomenon that could be learned during the training phase of 
the cut_model (especially for the laboratory data). By adding a second 
camera, we ensure that our model can be used to process data from 
different sources. 

4.4. Grapevine yellow detection: fusion of multispectral feature maps 
from two different multispectral cameras 

For this second experiment, due to some difficulties during the 
acquisition phase of the SWIR images, we have fewer available images 
than those composing the multispectral NIR dataset. We were able to 
keep 1176 exploitable images per band from the previous NIR dataset. 
The shift between the SWIR image and the NIR image is not regular due 
to the acquisition conditions (the same leaves were placed at different 
positions to make the acquisitions), reproducing in situ acquisition 
conditions. 

We individually evaluated the performances of the eight SWIR bands 
and observed that we achieved lower accuracy rates than using the NIR 
bands. We resized the data from (224, 224) to (300, 300) and used a 

Table 4 
Results obtained for the identification of the healthy/infected status by using 
similar architectures (EfficientNet-B0) for each level; models that were trained 
for the same task.  

Data Accuracy F1 Score FPS 

RGB 99.28% 99.12% 26.9 
Blue (B) 96.88% 96.5% 26.9 
Green (G) 99.33% 99.33% 26.9 
Red (R) 99.55% 99.55% 26.9 
Red Edge (RE) 98.54% 98.66% 26.9 
NIR 98.66% 98.66% 26.9 
Proposed solution using 3 bands (G-RE-NIR) 99.58% 99.35% 26.28 
Proposed solution using 4 bands (G-R-RE-NIR) 99.76% 99.76% 25.3 
Proposed solution using 5 bands (B-G-R-RE-NIR) 99.33% 99.12% 24.2  

Table 5 
Results obtained for the identification of the disease by using similar architec-
tures (EfficientNet-B0) for each level; models that were trained for different 
tasks: main problem for level 1 models and sub-problem for level 2 model.  

Data Précision F1 Score Grapevine Yellow 

RGB 98.97% 98.81% 
Blue (B) 91.35% 90.82% 
Green (G) 98.71% 98.81% 
Red (R) 99.03% 99.03% 
Red Edge (RE) 99.35% 99.35% 
NIR 98.38% 98.54% 
Proposed solution (G-R) 99.58% 99.35% 
Proposed solution (G-R-NIR) 99.76% 99.76% 
Proposed solution (G-R-RE-NIR) 99.76% 99.76% 
Proposed solution (R-RE-NIR) 98.9% 98.81%  
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deeper architecture to try to improve our level 1 models on the two best 
bands (EfficientNet-B0 and EfficientNet-B3). The results are reported in 
Table 6. This drop in accuracy is mainly attributed to the least amount of 
training data. Indeed, by retraining the level 1 models for the NIR bands 
on the same training dataset, we achieved an accuracy of 93.83% for the 
green band, which was the best score and close to the best SWIR results. 

We found that the most relevant fusion occurred between SWIR 
bands 2 and 6, and we achieved an accuracy of 93.6% (we are again 
seeing a gain in accuracy). We then performed a more complex fusion 
between the two selected SWIR models, the Green model (which ach-
ieved an accuracy of 93.83%) and the Red Edge model (which achieved 
an accuracy of 91.78%). As previously mentioned, here, we need to 
apply the independent transformation block since the band cannot be 
properly combined directly without preprocessing. With this fusion, we 
record the best result with an accuracy of 94.52% versus 93.83% for the 
best individual model. We confirm that the more difficult the classifi-
cation task is, the greater the gain in precision achieved by our fusion 
strategy. We also confirm that without any preprocessing, we were able 
to combine data from two different cameras. Finally, the different res-
olutions were not problematic which is interesting because we can in-
crease the resolution of the inputs that are more difficult to analyze but 
are relevant, such as NIR images, to gain accuracy while reducing the 
resolution of the images that are easier to process, such as RGB data, to 
gain speed. 

4.5. Discussion 

We proposed an independent transformation block that starts with 
PCA followed by resizing to be able to choose which feature maps will be 
concatenated. We also proposed another possibility, a global trans-
formation block, by applying a single PCA after the concatenation of 

feature maps to let the proposed approach choose the relevant combi-
nation of feature maps. 

When separately extracting the features of each model due to the 
independent transformation block, the computation time could be 
reduced if we change the size of the feature maps and then reduce their 
dimensions. This configuration will be privileged when li (Li) is larger 
than l (L); therefore, we need to reduce the size of each map since PCA 
would be run faster on maps with smaller dimensions. 

When we applied the independent transformation block, we 
employed the same number of maps from each level 1 model if possible, 
i.e., if the number of models is a divisor of the expected number of maps. 
In this situation, the αi coefficients were equal. When these conditions 
are not met, or in other situations, one may choose larger coefficients for 
the best individual models. For example, one may want to force a model 
to work with features from different spectral bands while knowing that 
the NIR carries more relevant information. In this case, we can use more 
feature maps from this band than from the other bands (for example, 
αNIR = 0.7*N). The various αi coefficients were empirical in this work 
according to the observed performances, which is another limitation of 
the proposed approach. In future work, it would be relevant to theorize 
this outcome to ensure that sufficient information is available from each 
source. 

Note that the global transformation block allows bypassing the dif-
ficulty of properly choosing the coefficients αi (the number of feature 
maps selected from each level 1 model) as the PCA builds the new maps 
with linear combinations of maps extracted from all level 1 models, but 
with the need for similar data or a preprocessing step. However, when 
we combined different architectures, if one of them outputs many more 
feature maps than the other (for instance, by three or four times), this 
transformation block will tend to give too much importance to these 
maps, and the other blocks will be almost interpreted as noise. We 
concluded that it is better if there are large differences in the number of 
feature maps extracted from each level 1 model, to force the variety of 
feature maps by favoring the use of one PCA per model, i.e., using the 
independent transformation block. Such a transformation can also be 
easily utilized with data of different types since there is no need to 
preprocess them to keep relevant information from each, which means 
that they can be more independent. Notably, we favored the latter so-
lution as soon as the data was obtained from different sources, as shown 
by the last two experiments. 

We showed that our model can be applied when the level 2 model 
shares the same architecture with the level 1 models but also has a 
different architecture. We have also noted that the complementarity of 
features could be artificially increased by applying simple yet effective 
modifications to the RGB input images. It could be relevant to increase 
the variety of features by using, in addition to these modifications, 

Fig. 6. (a) Grapevine leafroll-associated virus leaf correctly classified by all models; (b) Grapevine yellow leaf correctly classified by all models; (c) Grapevine yellow 
leaf that fools the best individual model being classified as Grapevine leafroll-associated virus but is correctly classified as Grapevine yellow by our solution. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article) 

Table 6 
Results for each SWIR band for the disease identification problem. We identified 
the best bands by reproducing the same test for each of the 8 bands and then 
improved the performance on the two best bands with deeper models.  

Spectral band Model Size Accuracy 

0 EfficientNet B0 (224,224) 87.02% 
1 EfficientNet B0 (224,224) 83.17% 
2 EfficientNet B0 (224,224) 89.42% 
2 EfficientNet B3 (300,300) 93.15% 
3 EfficientNet B0 (224,224) 87.02% 
4 EfficientNet B0 (224,224) 87.02% 
5 EfficientNet B0 (224,224) 87.98% 
6 EfficientNet B0 (224,224) 89.42% 
6 EfficientNet B3 (300,300) 90.41% 
7 EfficientNet B0 (224,224) 88.94%  
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concepts such as attention. 
The gains observed after applying modifications to the same data 

were quite limited because of the correlation among the features. 
However, when we used multispectral data, with less redundancy of 
information among the bands, and when the classification task was more 
difficult, we observed larger gains. The use of multimodal data, with 
nonimage data for instance, could be addressed by our method with 
independent block structures. Compared to classical ensemble solutions, 
we observe a consequent gain of time and computational resources due 
to the level 1 models that are neither utilized nor saved in memory in 
their entirety but only up to a layer. Therefore, the shallower the chosen 
layer, the greater the interest of the solution. 

Even if the optimization of the position follows objectives that 
contrast with the grafting solution, we are still bound to the same main 
constraint, which is that we do not yet have a theoretical rule to 
determine an optimal, or at least a relevant, position. Hence, it can be 
necessary to try different combinations of feature maps before finding 
the best combination, which implies building and training different 
cut_models at the training phase, which can be penalizing in terms of 
computation time. In future work, it would be relevant to focus on in-
formation theory approaches to optimize, or even automatize, the se-
lection of layer positions and to estimate the complementarity between 
two sources. Such approaches should reduce the empirical aspect of the 
proposed solution. 

We skipped the preprocessing step of realigning images to save time, 
which led us to eliminate the vegetation indices that need perfect 
alignment among bands. If we find that such indices are relevant to use, 
nothing prevents us from realigning the images, constructing relevant 
indices and introducing them to our solution, with a model adapted to 
each index. We therefore respect the conditions to use a single PCA for 
all models if this is relevant. 

5. Conclusions 

We proposed an innovative feature aggregation method that uses 
different architectures, allowing us to overcome the limitations of 
existing knowledge distillation techniques when applied to an ensemble 
of teachers. In our solution, we train an ensemble of level 1 models on a 
problem but only use low-level feature maps that are transformed and 
concatenated due to PCA and interpolation techniques to feed a level 2 
model. In this way, we can reuse the information on another compact 
model that will be trained on these feature maps by starting at an 
adequate level. As we work at the feature map level, our approach re-
duces the processing time and computational resources by reinjecting 
the information at a layer that is not the first of the level 2 models by 
simply removing all its previous layers. Further tests will focus on 
determining in a less empirical way the optimal layers for the extraction 
and reinjection of features, especially in the context of multiscale feature 
aggregation. 

By forcing the level 2 model to work with features extracted from 
different models, i.e., from different representations of the same image 
or from data acquired by different sensors, we push it to have a func-
tioning close to that of an ensemble model while remaining a compact 
model, thus observing a gain in accuracy compared to classical super-
vised training. 

We succeeded in building a compact global model that can jointly 
process features from different sources, notably multispectral data. 
These results are even more interesting since no preprocessing is 
necessary to realign the input data. Not only is it not necessary to 
manage the parallax effect among multispectral images, but there is 
nothing to prevent us from using different data as long as we can extract 
feature maps. This approach enables many possibilities since neural 
networks can be applied to many types of data. A future step will be to 
apply the strategy to the real data acquired in vineyards. 

From an application point of view, we achieved very good identifi-
cation rates of Grapevine yellow disease in laboratory conditions 

(uniform lighting and same geometry of the acquisition system) by using 
multispectral images in our feature aggregation method. The application 
prospects for real data are encouraging. Indeed, we can use the most 
relevant bands to perform the classification by compensating them for 
their sensitivity to environmental conditions using less affected bands. It 
will now be necessary to apply this solution to in situ acquisitions. The 
method could be of additional interest under these conditions, allowing 
the relevance of multispectral data to be applied while providing addi-
tional robustness to variations in experimental conditions with other less 
sensitive input data. 

Another interesting aspect of the proposed solution is that it can be 
applied to hierarchical classification tasks, successfully reusing feature 
maps for a subproblem that is not that handled by the ensemble model. 
The saving of time compared to ensemble models is important here since 
the feature maps have already been extracted. We even manage to 
achieve a computation time similar to that of a single classical network. 

We also proposed two possibilities to apply a solution depending on 
whether we want the repartition of the feature maps to be manually or 
automatically determined. The latter requires more resources and ach-
ieves slightly better results. However, the level 1 models must process 
the same type of data (same dimensions and perfectly aligned images). 
The independent block structure is much more flexible. 

The solution is designed to work with architectures that are different, 
and we obtain relevant results when we transfer knowledge between 
two different EfficientNetB0, from an EfficientNetB0 to an Effi-
cientNetB3, and from three different models. 

To our knowledge, none of the existing work thus far has been car-
ried out to reuse the feature maps from an ensemble of models with 
different architectures and from multiple sources to a compact model. 
Further tests will be carried out with other architectures. We will also 
seek to determine the best combinations of spectral bands to optimize 
the results of classification for in situ conditions and extend the solution 
to other types of data. 

One of the main interests of our solution is that it can be applied to a 
large panel of applications, even beyond the smart agriculture domain, 
since we only need different representations of the input data, which can 
derive from specific cameras with different sensors and different cam-
eras but can also be artificially simulated via classical colorspace 
changes. It has indeed been proven many times in the literature that 
ensemble solutions can achieve gains in accuracy for many applications 
at the cost of increasing the computation time. In this paper, we pro-
posed a solution to benefit from this accuracy gain without adding too 
many computations, therefore improving the accuracy/speed balance of 
such solutions. Furthermore, we showed that we can use an ensemble of 
models with different architectures, which is another advantage for the 
solution to be applied in various applications. The proposed solution can 
be applied as it is, with possible adaptations for on-board computing, to 
process images acquired by drones. An interesting improvement would 
be to combine images acquired from different viewpoints. However, 
even if we can combine images without realigning them, it will probably 
be more difficult to combine images taken from very different angles. It 
will then probably be necessary to separate the information flows in the 
cut_model and process several “batches” of feature maps rather than 
combining incompatible maps. Projects are currently being investigated 
with the Champagne committee to define a test framework in which the 
proposed solution, as well as other solutions developed by manufac-
turers, can be tested in interaction with winegrowers and champagne 
committee experts. 
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